The southern pine beetle, Dendroctonus frontalis Zimmerman, is the most destructive insect pest of pine forests in the southeastern United States, Mexico, and Central America. Southern pine beetle aggressively attacks pine trees, and when in epidemic stages, they are capable of killing even the most healthy pine trees in a short period of time. Despite the amount of destruction caused by the southern pine beetle and the amount of monetary loss faced by the timber industry and recreation, the population genetics of this species has been limited to comparisons among distant geographic locations. This study investigates the fine-scale genetic population structure of the southern pine beetle in Mississippi. Very little genetic differentiation was observed among samples. Bayesian assignment testing failed to detect multiple groups within all samples; estimates of genetic differentiation and genetic distance were very low in magnitude; and a Mantel test did not reveal a significant relationship between genetic distance and geographic distance. These results suggest that management of the southern pine beetle needs to consider the potential movements of individuals within and among national forests and should be focused on a large scale, at least as big as continuously forested areas and possibly even multiple forests. These results further suggest that removal of beetle-infested trees is important.